Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Front Immunol ; 15: 1282521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455037

RESUMO

Background: The routine use of donor-derived cell-free DNA (dd-cfDNA) assays to monitor graft damage in patients after kidney transplantation is being implemented in many transplant centers worldwide. The interpretation of the results can be complicated in the setting of multiple sequential kidney transplantations where accurate donor assignment of the detected dd-cfDNA can be methodologically challenging. Methods: We investigated the ability of a new next-generation sequencing (NGS)-based dd-cfDNA assay to accurately identify the source of the detected dd-cfDNA in artificially generated samples as well as clinical samples from 31 patients who had undergone two sequential kidney transplantations. Results: The assay showed a high accuracy in quantifying and correctly assigning dd-cfDNA in our artificially generated chimeric sample experiments over a clinically meaningful quantitative range. In our clinical samples, we were able to detect dd-cfDNA from the first transplanted (nonfunctioning) graft in 20% of the analyzed patients. The amount of dd-cfDNA detected from the first graft was consistently in the range of 0.1%-0.6% and showed a fluctuation over time in patients where we analyzed sequential samples. Conclusion: This is the first report on the use of a dd-cfDNA assay to detect dd-cfDNA from multiple kidney transplants. Our data show that a clinically relevant fraction of the transplanted patients have detectable dd-cfDNA from the first donor graft and that the amount of detected dd-cfDNA is in a range where it could influence clinical decision-making.


Assuntos
Ácidos Nucleicos Livres , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Doadores de Tecidos , Bioensaio , Ácidos Nucleicos Livres/genética , Tomada de Decisão Clínica
2.
Front Immunol ; 15: 1355128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361942

RESUMO

Background: Living donor (LD) kidney transplantation in the setting of ABO blood group incompatibility (ABOi) has been previously reported to be associated with increased risk for antibody-mediated rejection (ABMR). It is however unclear if the presence of pre-transplant donor specific antibodies (DSA) works as an additive risk factor in the setting of ABOi and if DSA positive ABOi transplants have a significantly worse long-term outcome as compared with ABO compatible (ABOc) DSA positive transplants. Methods: We investigated the effect of pre-transplant DSA in the ABOi and ABOc setting on the risk of antibody-mediated rejection (ABMR) and graft loss in a cohort of 952 LD kidney transplants. Results: We found a higher incidence of ABMR in ABOi transplants as compared to ABOc transplants but this did not significantly affect graft survival or overall survival which was similar in both groups. The presence of pre-transplant DSA was associated with a significantly increased risk of ABMR and graft loss both in the ABOi and ABOc setting. We could not detect an additional risk of DSA in the ABOi setting and outcomes were comparable between DSA positive ABOi and ABOc recipients. Furthermore, a combination of DSA directed at both Class I and Class II, as well as DSA with a high mean fluorescence intensity (MFI) showed the strongest relation to ABMR development and graft loss. Conclusion: The presence of pre-transplant DSA was associated with a significantly worse long-term outcome in both ABOi and ABOc LD kidney transplants and our results suggests that the risk associated with pre-transplant DSA is perhaps not augmented in the ABOi setting. Our study is the first to investigate the long-term effects of DSA in the ABOi setting and argues that pre-transplant DSA risk could potentially be evaluated similarly regardless of ABO compatibility status.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Estudos de Coortes , Suíça/epidemiologia , Doadores Vivos , Rejeição de Enxerto , Sistema ABO de Grupos Sanguíneos , Anticorpos
3.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337031

RESUMO

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Assuntos
Proteínas Cdc20 , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Transdução de Sinais , Humanos
4.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370611

RESUMO

The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modelling with comprehensive high resolution mutational scanning, we show that α-helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α-helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting complex by binding to an α-helical recruitment module in RBM7. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 in health and disease.

5.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177924

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Assuntos
COVID-19 , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2
6.
Nat Commun ; 15(1): 609, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242876

RESUMO

Antibodies reactive to human leukocyte antigens (HLA) represent a barrier for patients awaiting transplantation. Based on reactivity patterns in single-antigen bead (SAB) assays, various epitope matching algorithms have been proposed to improve transplant outcomes. However, some antibody reactivities cannot be explained by amino acid motifs, leading to uncertainty about their clinical relevance. Antibodies against the HLA class II molecule, DQß0603:DQα0103, present in some candidates, represent one such example. Here, we show that peptides derived from amino acids 119-148 of the HLA class I heavy chain are bound to DQß0603:DQα0103 proteins and contribute to antibody reactivity through an HLA-DM-dependent process. Moreover, antibody reactivity is impacted by the specific amino acid sequence presented. In summary, we demonstrate that polymorphic HLA class I peptides, bound to HLA class II proteins, can directly or indirectly be part of the antibody binding epitope. Our findings have potential important implications for the field of transplant immunology and for our understanding of adaptive immunity.


Assuntos
Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Humanos , Especificidade de Anticorpos , Antígenos de Histocompatibilidade Classe I/genética , Anticorpos , Epitopos , Peptídeos
7.
Science ; 383(6680): eadg7942, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236961

RESUMO

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Síndrome Pós-COVID-19 Aguda , Proteoma , Tromboinflamação , Humanos , Proteínas do Sistema Complemento/análise , Proteínas do Sistema Complemento/metabolismo , Síndrome Pós-COVID-19 Aguda/sangue , Síndrome Pós-COVID-19 Aguda/complicações , Síndrome Pós-COVID-19 Aguda/imunologia , Tromboinflamação/sangue , Tromboinflamação/imunologia , Biomarcadores/sangue , Proteômica , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
8.
Nature ; 625(7993): 195-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123684

RESUMO

Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation1. Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases2, whereas mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B553. Although the role of kinases in mitotic entry is well established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited4. Inhibition of PP2A:B55 is achieved by the intrinsically disordered proteins ARPP195,6 and FAM122A7. Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the single-particle cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies, both intrinsically disordered proteins bind PP2A:B55, but do so in highly distinct manners, leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provide a molecular roadmap for the development of therapeutic interventions for PP2A:B55-related diseases.


Assuntos
Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Intrinsicamente Desordenadas , Fosfoproteínas , Proteína Fosfatase 2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Mitose , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestrutura , Fosforilação , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/ultraestrutura
9.
Front Immunol ; 14: 1286684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077350

RESUMO

Objective: Immunosuppressive therapy for cardiac sarcoidosis (CS) still largely consists of corticosteroid monotherapy. However, high relapse rates after tapering and insufficient efficacy are significant problems. The objective of this study was to investigate the efficacy and safety of non-biological and biological disease-modifying anti-rheumatic drugs (nb/bDMARDs) considering control of myocardial inflammation assessed by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of the heart. Methods: We conducted a retrospective analysis of treatment response to nb/bDMARDs of all CS patients seen in the sarcoidosis center of the University Hospital Zurich between January 2016 and December 2020. Results: We identified 50 patients with CS. Forty-five patients with at least one follow-up PET/CT scan were followed up for a mean of 20.5 ± 12.8 months. Most of the patients were treated with prednisone and concomitant nb/bDMARDs. At the first follow-up PET/CT scan after approximately 6.7 ± 3 months, only adalimumab showed a significant reduction in cardiac metabolic activity. Furthermore, comparing all serial follow-up PET/CT scans (143), tumor necrosis factor inhibitor (TNFi)-based therapies showed statistically significant better suppression of myocardial 18F-FDG uptake compared to other treatment regimens. On the last follow-up, most adalimumab-treated patients were inactive (n = 15, 48%) or remitting (n = 11, 35%), and only five patients (16%) were progressive. TNFi was safe even in patients with severely reduced left ventricular ejection fraction (LVEF), and a significant improvement in LVEF under TNFi treatment was observed. Conclusion: TNFi shows better control of myocardial inflammation compared to nbDMARDs and corticosteroid monotherapies in patients with CS. TNFi was efficient and safe even in patients with severely reduced LVEF.


Assuntos
Miocardite , Sarcoidose , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos , Compostos Radiofarmacêuticos , Volume Sistólico , Adalimumab/uso terapêutico , Função Ventricular Esquerda , Sarcoidose/diagnóstico por imagem , Sarcoidose/tratamento farmacológico , Sarcoidose/complicações , Miocardite/tratamento farmacológico , Corticosteroides/uso terapêutico , Inflamação/tratamento farmacológico
10.
Mol Syst Biol ; 19(12): e11782, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37916966

RESUMO

Phosphoprotein phosphatases (PPPs) regulate major signaling pathways, but the determinants of phosphatase specificity are poorly understood. This is because methods to investigate this at scale are lacking. Here, we develop a novel in vitro assay, MRBLE:Dephos, that allows multiplexing of dephosphorylation reactions to determine phosphatase preferences. Using MRBLE:Dephos, we establish amino acid preferences of the residues surrounding the dephosphorylation site for PP1 and PP2A-B55, which reveals common and unique preferences. To compare the MRBLE:Dephos results to cellular substrates, we focused on mitotic exit that requires extensive dephosphorylation by PP1 and PP2A-B55. We use specific inhibition of PP1 and PP2A-B55 in mitotic exit lysates coupled with phosphoproteomics to identify more than 2,000 regulated sites. Importantly, the sites dephosphorylated during mitotic exit reveal key signatures that are consistent with MRBLE:Dephos. Furthermore, integration of our phosphoproteomic data with mitotic interactomes of PP1 and PP2A-B55 provides insight into how binding of phosphatases to substrates shapes dephosphorylation. Collectively, we develop novel approaches to investigate protein phosphatases that provide insight into mitotic exit regulation.


Assuntos
Mitose , Proteína Fosfatase 2 , Fosforilação , Proteína Fosfatase 2/química , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Especificidade por Substrato
11.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693408

RESUMO

Progression through the cell cycle is controlled by regulated and abrupt changes in phosphorylation.1 Mitotic entry is initiated by increased phosphorylation of mitotic proteins, a process driven by kinases,2 while mitotic exit is achieved by counteracting dephosphorylation, a process driven by phosphatases, especially PP2A:B55.3 While the role of kinases in mitotic entry is well-established, recent data have shown that mitosis is only successfully initiated when the counterbalancing phosphatases are also inhibited.4 For PP2A:B55, inhibition is achieved by the two intrinsically disordered proteins (IDPs), ARPP19 (phosphorylation-dependent)6,7 and FAM122A5 (inhibition is phosphorylation-independent). Despite their critical roles in mitosis, the mechanisms by which they achieve PP2A:B55 inhibition is unknown. Here, we report the cryo-electron microscopy structures of PP2A:B55 bound to phosphorylated ARPP19 and FAM122A. Consistent with our complementary NMR spectroscopy studies both IDPs bind PP2A:B55, but do so in highly distinct manners, unexpectedly leveraging multiple distinct binding sites on B55. Our extensive structural, biophysical and biochemical data explain how substrates and inhibitors are recruited to PP2A:B55 and provides a molecular roadmap for the development of therapeutic interventions for PP2A:B55 related diseases.

12.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693415

RESUMO

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1 and FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and have delayed disease onset in vivo. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins for efficient infection and provides molecular insight to the possible underlying molecular defects in fragile X syndrome.

14.
Nat Struct Mol Biol ; 30(9): 1303-1313, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474739

RESUMO

SUMOylation regulates numerous cellular processes, but what represents the essential functions of this protein modification remains unclear. To address this, we performed genome-scale CRISPR-Cas9-based screens, revealing that the BLM-TOP3A-RMI1-RMI2 (BTRR)-PICH pathway, which resolves ultrafine anaphase DNA bridges (UFBs) arising from catenated DNA structures, and the poorly characterized protein NIP45/NFATC2IP become indispensable for cell proliferation when SUMOylation is inhibited. We demonstrate that NIP45 and SUMOylation orchestrate an interphase pathway for converting DNA catenanes into double-strand breaks (DSBs) that activate the G2 DNA-damage checkpoint, thereby preventing cytokinesis failure and binucleation when BTRR-PICH-dependent UFB resolution is defective. NIP45 mediates this new TOP2-independent DNA catenane resolution process via its SUMO-like domains, promoting SUMOylation of specific factors including the SLX4 multi-nuclease complex, which contributes to catenane conversion into DSBs. Our findings establish that SUMOylation exerts its essential role in cell proliferation by enabling resolution of toxic DNA catenanes via nonepistatic NIP45- and BTRR-PICH-dependent pathways to prevent mitotic failure.


Assuntos
Anáfase , DNA Catenado , DNA , Sumoilação
15.
Mol Syst Biol ; 19(7): e11164, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37219487

RESUMO

Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.


Assuntos
Biblioteca de Peptídeos , Proteômica , Humanos , Fosforilação , Clatrina
16.
Nat Immunol ; 24(6): 955-965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106039

RESUMO

The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.


Assuntos
Subpopulações de Linfócitos B , COVID-19 , Humanos , SARS-CoV-2 , Células B de Memória , Linfócitos B
17.
Nat Commun ; 14(1): 1383, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914624

RESUMO

Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.


Assuntos
Sobrevivência de Enxerto , Interleucina-2 , Camundongos , Animais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pulmão , Rejeição de Enxerto , Linfócitos T Reguladores , Camundongos Transgênicos , Aloenxertos , Fatores de Transcrição Forkhead
18.
Transpl Infect Dis ; 25(2): e14052, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36884207

RESUMO

BACKGROUND: Before the availability of mRNA vaccines, many transplant centers chose to significantly reduce maintenance immunosuppression in kidney transplant recipients (KTRs) with SARS-CoV-2 infection. The extent to which this increases the risk of allosensitization is unclear. METHODS: In this observational cohort study, we analyzed 47 KTRs from March 2020 to February 2021 who underwent substantial reduction of maintenance immunosuppression during SARS-CoV-2 infection. KTRs were followed at 6 and 18 months concerning the development of de novo donor-specific anti-HLA (human leukocyte antigen) antibodies (DSA). The HLA-derived epitope mismatches were calculated using the predicted indirectly recognizable HLA-epitopes (PIRCHE-II) algorithm. RESULTS: In total, 14 of 47 KTRs (30%) developed de novo HLA antibodies after the reduction of maintenance immunosuppression. KTRs with higher total PIRCHE-II scores and higher PIRCHE-II scores for the HLA-DR locus were more likely to develop de novo HLA antibodies (p = .023, p = .009). Furthermore, 4 of the 47 KTRs (9%) developed de novo DSA after reduction of maintenance immunosuppression, which were exclusively directed against HLA-class II antigens and also showed higher PIRCHE-II scores for HLA-class II. The cumulative mean fluorescence intensity of 40 KTRs with preexisting anti-HLA antibodies and 13 KTRs with preexisting DSA at the time of SARS-CoV-2 infection remained stable after the reduction of maintenance immunosuppression (p = .141; p = .529). CONCLUSIONS: Our data show that the HLA-derived epitope mismatch load between donor and recipient influences the risk of de novo DSA development when immunosuppression is temporarily reduced. Our data further suggest that reduction in immunosuppression should be made more cautiously in KTRs with high PIRCHE-II scores for HLA-class II antigens.


Assuntos
COVID-19 , Transplante de Rim , Humanos , Epitopos , Transplante de Rim/efeitos adversos , Rejeição de Enxerto/prevenção & controle , Teste de Histocompatibilidade , SARS-CoV-2 , Antígenos HLA , Anticorpos , Doadores de Tecidos , Terapia de Imunossupressão , Antígenos de Histocompatibilidade Classe II , Transplantados , Sobrevivência de Enxerto
19.
Front Immunol ; 14: 1104371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875145

RESUMO

Introduction: The type of donation may affect how susceptible a donor kidney is to injury from pre-existing alloimmunity. Many centers are, therefore, reluctant to perform donor specific antibody (DSA) positive transplantations in the setting of donation after circulatory death (DCD). There are, however, no large studies comparing the impact of pre-transplant DSA stratified on donation type in a cohort with a complete virtual cross-match and long-term follow-up of transplant outcome. Methods: We investigated the effect of pre-transplant DSA on the risk of rejection, graft loss, and the rate of eGFR decline in 1282 donation after brain death (DBD) transplants and compared it to 130 (DCD) and 803 living donor (LD) transplants. Results: There was a significant worse outcome associated with pre-transplant DSA in all of the studied donation types. DSA directed against Class II HLA antigens as well as a high cumulative mean fluorescent intensity (MFI) of the detected DSA showed the strongest association with worse transplant outcome. We could not detect a significant additive negative effect of DSA in DCD transplantations in our cohort. Conversely, DSA positive DCD transplants appeared to have a slightly better outcome, possibly in part due to the lower mean fluorescent intensity (MFI) of the pre-transplant DSA. Indeed when DCD transplants were compared to DBD transplants with similar MFI (<6.5k), graft survival was not significantly different. Discussion: Our results suggest that the negative impact of pre-transplant DSA on graft outcome could be similar between all donation types. This suggests that immunological risk assessment could be performed in a similar way regardless of the type of donor kidney transplantation.


Assuntos
Anticorpos , Doadores Vivos , Humanos , Tipagem e Reações Cruzadas Sanguíneas , Estudos de Coortes , Suíça
20.
Nat Commun ; 14(1): 1143, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854761

RESUMO

The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.


Assuntos
Carcinogênese , Proteína Fosfatase 2 , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Humanos , Aminoácidos , Carcinogênese/genética , Carcinogênese/metabolismo , Domínio Catalítico , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/ultraestrutura , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...